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ABSTRACT

Probabilistic Explicit Topic Modeling

Joshua A. Hansen
Department of Computer Science, BYU

Master of Science

Latent Dirichlet Allocation (LDA) is widely used for automatic discovery of latent
topics in document corpora. However, output from analysis using an LDA topic model suffers
from a lack of identifiability between topics not only across corpora, but across runs of the
algorithm. The output is also isolated from enriching information from knowledge sources
such as Wikipedia and is difficult for humans to interpret due to a lack of meaningful topic
labels.

This thesis introduces two methods for probabilistic explicit topic modeling that ad-
dress these issues: Latent Dirichlet Allocation with Static Topic-Word Distributions (LDA-
STWD), and Explicit Dirichlet Allocation (EDA). LDA-STWD directly substitutes pre-
computed counts for LDA topic-word counts, leveraging existing Gibbs sampler inference.
EDA defines an entirely new explicit topic model and derives the inference method from first
principles. Both of these methods approximate topic-word distributions a priori using word
distributions from Wikipedia articles, with each article corresponding to one topic and the
article title being used as a topic label. By this means, LDA-STWD and EDA overcome
the nonidentifiability, isolation, and unintepretability of LDA output.

We assess the effectiveness of LDA-STWD and EDA by means of three tasks: doc-
ument classification, topic label generation, and document label generation. Label quality
is quantified by means of user studies. We show that a competing non-probabilistic explicit
topic model handily beats both LDA-STWD and EDA as a dimensionality reduction tech-
nique in a document classification task. Surprisingly, we find that topic labels from another
approach using LDA and post hoc topic labeling (called LDA+Lau) are on one corpus
preferred over topic labels prespecified from Wikipedia. Finally, we show that LDA-STWD
improves substantially upon the performance of the state of the art in document labeling.

Keywords: topic modeling, machine learning, Wikipedia
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Chapter 1

Introduction

The world is awash with data. One estimate puts the total number of books (not

copies of books) ever published at some 129 million. The World Wide Web is estimated

to contain at least 8.2 billion indexed pages. Twitter recently claimed 340 million tweets

per day (124 billion annually), and Wikipedia boasts an aggregate 23 million articles across

hundreds of languages. The data surge reaches beyond text, with 72 hours of video uploaded

to YouTube each minute, and one report estimating that 1.8 zettabytes of enterprise server

data were created in 2010 [13, 21, 25–27, 30].

Such a collection of data representing such a variety of activity did not exist prior

to the emergence of the Internet as a mass technocultural phenomenon starting in the mid-

1990s. Now these new data sources present ripe fruit for all manner of analysis, with insights

in linguistics, anthropology, sociology, literature, organizational behavior, economics, and

many other areas of human endeavor merely waiting to be discovered.

However, our own human limitations stand as the chief obstacle to advances at this

scale. Even the most voracious human mind could never hope to take in more than the

minutest fraction of this endless informatic ocean. Fortunately, the same digital systems that

initially fostered the seemingly endless flood of data also prove useful in taming the deluge.

One computational tool increasingly used to understand large datasets is probabilistic topic

modeling, which “enables us to organize and summarize electronic archives at a scale that

would be impossible” by human effort alone [1].

1
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1.1 Modeling Topics with Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a probabilistic, generative model of document collec-

tions that models documents as mixtures over latent topics [2] where topics are defined as

categorical distributions over some vocabulary. These topics can be discovered without su-

pervision using any of a number of inference methods [2, 8, 19] and are useful for exploring

document corpora in terms of the themes or topics that they contain [1, 7].

In order to give a better appreciation for the nature of topic model output, we now

give an example taken from LDA inference on a corpus of excerpts from State of the Union

messages. These messages have been given by United States presidents over the course of the

country’s history. Topic modeling allows for discovery of unifying themes across presidents

and across time. Inference yielded these five topics (among others):

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

defense act post government world

military congress service great peace

forces law mail country nations

strength bill department means nation

security session postal experience war

The following two documents from the corpus have been color-coded to represent the

topic of some of the words:

Document 1 [Harry Truman]: We are working toward the time when the

United Nations will control weapons of mass destruction and will have the

forces to preserve international law and order. While the world remains

unsettled, however, and as long as our own security and the security of the

free world require, we will maintain a strong and well-balanced defense or-

ganization. . . . Under the principles of the United Nations Charter we must

continue to share in the common defense of free nations against aggression. At

2
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the last session this Congress laid the basis for this joint effort. We now must

put into effect the common defense plans that are being worked out.

Document 2 [Zachary Taylor]: By an act of Congress . . . provision was

made for extending post-office and mail accommodations to California and

Oregon. Exertions have been made to execute that law , but the limited provi-

sions of the act . . . render those exertions in a great degree ineffectual. More

particular and efficient provision by law is required on this subject. The act

of 1845 reducing postage has now. . . produced results fully showing that the

income from such reduced postage is sufficient to sustain the whole expense of

the service of the Post-Office . . . .

The topic model shows a strong connection between Truman’s message and the na-

tional security and global peace movement topics (Topic 0 and Topic 4, respectively). Tay-

lor’s message is largely focused on the Postal Service, captured as Topic 2. This diversity

corresponds well to the difference in concerns of mid-19th-century and mid-20th-century pres-

idents. However, both had to deal with the Congress, which the topic model captures in the

form of Topic 1, scattered through both documents. This example illustrates the ability of

a topic model to discover thematic patterns in a corpus. In this case, those patterns largely

correspond to what is known about the historical circumstances under which the documents

in the corpus were created.

This example illustrates the ability of topic models to summarize document collec-

tions in terms of the topics discussed therein. This provides a level of semantic abstraction

in many ways more instantly useable by the human mind than the documents themselves.

Additionally, mapping documents into a reduced semantic space enables automated process-

ing

3
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1.2 A Critique of LDA

Topics discovered by latent topic models such as LDA usually did not originate in the corpus

in question but were already in use in other contexts by the language community. Thus latent

topic models often simply rediscover topics already generally known, while being completely

ignorant of the preexisting topics. When latent topic models encounter the same topic in

different corpora, the implied linkage between the different instantiations of the topic can

only be discovered by time-consuming post hoc comparisons. We term this the inter-run

identifiability problem.

The inter-run identifiability problem can be thought of as an extension of the phe-

nomenon of label switching in stochastic inference for mixture models, which demonstrates

that the makeup of a topic is not guaranteed to persist across sampler iterations. This prop-

erty also extends across iterations produce in samplers with different (as well as identical)

initializations.

Topics generated by LDA and other latent topic models are also unsatisfactory in

requiring post hoc labeling for easier human interpretation. Fast, automatic methods such as

concatenating the top N words per topic produce labels that over-represent high-weighted

terms and are often hard to interpret. Manual labeling may require substantial human

effort to understand the contexts of usage and introduces obvious subjectivity. And better-

performing labeling methods still require separate, often complicated processing in addition

to the original topic modeling.

This thesis describes two approaches to overcoming LDA’s deficiencies in inter-run

identifiability and topic labeling. Both approaches involve adapting LDA for use with ex-

plicit rather than latent topics. The first approach, known as Latent Dirichlet Alloca-

tion with Static Topic-Word Distributions (LDA-STWD), simply substitutes precomputed

topic-word counts into the standard LDA complete conditional, allowing inference by Gibbs

sampling to be used essentially unmodified. The second approach, known as Explicit Dirich-

let Allocation (EDA), is a new model similar to LDA but rederived from first principles

4
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after defining document-topic counts as explicit and not conditioned on a Dirichlet prior.

In both of these approaches, the explicit topics are estimated in advance from

Wikipedia articles, one topic per article. Such a connection to Wikipedia provides a number

of advantages in interpretation of topic model output:

− Each topic has a pre-existing, human-defined label (the article title).

− Display of topic model output can be enriched using Wikipedia article text, categories,

links, etc.

− All topic model output—even across corpora—is instantly comparable because it exists

in a single global space rather than many different spaces.

We exploit the first of these advantages to implement a document labeling algorithm that

outperforms the current state of the art.

1.3 Thesis Statement

Probabilistic topic models that incorporate pre-specified topics with their accompanying

labels can assign labels to topics and documents that reflect the meaning of the topics and

the content of the individual documents in a collection more effectively than a combination

of the LDA topic model and a post hoc labeling method.

1.4 Roadmap for Thesis

In the remainder of this thesis, we detail relevant related work in Chapter 2 and then define

the two models in Sections 3.1 and 3.2. In Chapter 4 we describe the methods used to evaluate

model output, and give results and analysis. Chapter 5 gives conclusions and future work.

5



www.manaraa.com

Chapter 2

Related Work

In this chapter we situate the new LDA-STWD (Section 3.1) and EDA (Section 3.2)

models within the general realm of topic modeling. As these models will be evaluated

(Chapter 4) using a document labeling task in which document labels are generated from

the topic label of the document’s plurality topic, we also review the literature on automatic

topic labeling.

2.1 Topical Representations of Documents

Numerous approaches to topical analysis of texts have been developed. These can be

categorized according to whether the topic-document relationship is discovered using non-

probabilistic techniques such as singular value decomposition (SVD) or through probabilistic

inference methods, and according to whether topics are treated as latent and awaiting dis-

covery or as pre-specified and explicit. A typology of these existing approaches—as well as

of the approaches described in this thesis—is given in Table 2.1.

Latent Topics Explicit Topics
Non-Probabilistic LSA† ESA‡

Probabilistic PLSA§, LDA♮ LDA-STWD♯, EDA♭

Table 2.1: A typology of topical representations of documents. Note that PLSA is proba-
bilistic but not fully generative, i.e. the model cannot be used to generate new documents.
Key to Abbreviations: †Latent Semantic Analysis ‡Explicit Semantic Analysis
§Probabilistic Latent Semantic Analysis ♮Latent Dirichlet Allocation ♯Latent Dirichlet Allo-
cation with Static Topic-Word Distributions (introduced in Section 3.1). ♭Explicit Dirichlet
Allocation (introduced in Section 3.2)

6
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Latent Semantic Analysis [5] was the first in an important line of automatic topic dis-

covery methods. It discovers topics or “concepts” by constructing a document-word matrix

and reducing its dimensionality using singular value decomposition. This results in a model

of the corpus consisting of k concepts corresponding to the k largest singular values in the

decomposition.

In Probabilistic Latent Semantic Analysis [9] (Figure 2.1a), topics are still latent,

but rather than use the tools of linear algebra to discover them, PLSA recasts LSA as a

statistical inference problem. A partial generative process for documents is defined, allowing

the latent document-topic and topic-word distributions to be estimated using an expectation

maximization algorithm. The authors contend that this is more principled than using SVD to

reduce document-word matrices. They also point out that by explicitly modeling “contexts”

(topics), the model can represent polysemy (the occurrence of multiple senses for a given

word), the inability to do so being a key failing of LSA.

The aspect model (Figure 2.1b) described by Hofmann and Puzicha is a probabilistic

model in which both the document and the type of each word token is conditioned on a latent

“aspect” variable. They show that the aspect model outperforms PLSA on an information

retrieval task [10].

Latent Dirichlet Allocation [2] (Figure 2.2a) is likewise a probabilistic counterpart to

LSA with latent topics, but unlike PLSA it is fully generative. This is achieved by specify-

ing a Dirichlet prior distribution over the per-document mixing proportions—P (θ | α)—and

another over the topic-word distributions—P (ϕ | β). In addition to the mathematical satis-

faction of producing a fully generative model that can generate new documents and compute

probabilities of previously unseen documents, LDA also consistently outperforms PLSA in

empirical evaluations carried out by its creators. As a result, LDA has become the basis for

a myriad of derivative models.

LDA is defined by the generative process for generating a corpus of documents given

in Algorithm 1, where dn
⋆
⋆ represents the number of tokens in document d. This process

7
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....

..di

..zij

..wij

...

1 ≤ i ≤ M

..

1 ≤ j ≤ in
⋆
⋆

.

(a)

...

. ..zi .

..di . ..wi
.

1 ≤ i ≤ J

.

(b)

Figure 2.1: Graphical models for (a) Probabilistic Latent Semantic Analysis and (b) the
aspect model described by Hofmann and Puzicha. The di variables represent documents,
zij and zi represent latent token topic assignments, and wij and wi represent observed word
tokens.

implies the hierarchical Bayesian network in Figure 2.2.

Gibbs sampling for LDA is principally defined by the complete conditional distribu-

tion for token-topic assignments [8]:

P
(
zij = k

∣∣ z¬ij, w) ∝ ⋆n
ij
k + β

⋆n⋆
k + Jβ

· in
⋆
k + α

in⋆
⋆ +Kα

(2.1)

where, excluding the current assignment of zij from the counts,

Algorithm 1 Generative process for LDA.

for each topic index 1 ≤ k < K do
Sample ϕk ∼ Dirichlet(βk)

for each document index 1 ≤ i < D do
Sample length K vector θd ∼ Dirichlet(αi)
for each document token index 1 ≤ j < dn

⋆
⋆ do

Sample topic zij ∼ Categorical(θi)
Sample word token wij ∼ Categorical(ϕzij)

8
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.....

..α .

..θi .

..zij ..β

..wij ..ϕt
.

1 ≤ j ≤ in
⋆
⋆

..

1 ≤ i ≤ M

..

1 ≤ t ≤ K

.

(a)

wij|zij, ϕzij ∼ Categorical(ϕzij)
zij|θi ∼ Categorical(θi)
θi|α ∼ Dirichlet(α)
ϕi|β ∼ Dirichlet(β)

(b)

Figure 2.2: (a) Graphical model for Latent Dirichlet Allocation (b) Conditional probability
distributions for Latent Dirichlet Allocation

− ⋆n
ij
k is the number of times words of the same type as token wij are assigned to topic

k,

− ⋆n
⋆
t is the number of times topic t is assigned to any word,

− J is the total number of tokens,

− in
⋆
k is the number of tokens in document i assigned to topic k,

− in
⋆
⋆ is the number of tokens in document i, and

− K is the number of topics

Explicit Semantic Analysis [6] represents documents in Wikipedia-derived semantic

space. This is done by ranking each Wikipedia concept (corresponding to an article) by how

well its terms are represented within a given document. The selected results are impressive,

though evaluation is done only in terms of a word relatedness task. Though the algorithm

9
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is not formulated probabilistically—indeed, the authors make no mention of probabilistic

approaches whatsoever—it may lend itself to a probabilistic reinterpretation.

Mr. LDA is a distributed variational inference method for LDA. In one application

of their model, the authors provide “informed priors” for 100 softly prespecified topics,

allowing active guidance of topic discovery while still keeping topics latent [31]. However, it

is assumed that a small number of informed priors appropriate to the corpus are chosen in

advance—an impractical requirement in many scenarios due to the lack of prior knowledge

about a given corpus.

One analysis of LSA, LDA, and ESA finds significant benefit from explicit topics [4].

Explicit topics are intuitively appealing because they provide a semantic summary of docu-

ments in terms of human-defined concepts rather than machine-discovered topics. Yet ESA

assumes a document consists of a single topic—or implies as much by seeking Wikipedia

concepts that maximize the relatedness of the document as a whole—whereas documents

are more effectively modeled as mixtures of topics—as in LDA—to be discovered jointly.

This thesis addresses this issue by putting explicit topic corpus modeling in a probabilistic

framework.

Labeled LDA is a variation on LDA in which document topics are assigned a pri-

ori [20]. The authors apply it to a corpus of web pages with labels taken from the del.icio.us

social bookmarking site. The essential nature of the model is that topic-word distributions

remain latent, while document-topic distributions are observed—a complementary approach

to ours, which is to treat topic-word distributions as observed while document-topic distri-

butions remain latent.

2.2 Topic Labeling

Topic labeling is the task of automatically generating a label given a topic, where topic is

defined as a categorical distribution over the elements in some vocabulary. These labels are

intended to aid human interpretation of topic model output. A number of prior approaches

10
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to topic labeling have been described. Mei, Shen, and Zhai first defined the topic labeling

problem as the production of “a sequence of words which is semantically meaningful and

covers the latent meaning of [the distribution over words in a topic]” [18]. The authors also

describe a typical approach to the problem: generate candidate labels, rank the candidate

labels according to some measure of relevance, and select a high-scoring candidate or candi-

dates to serve as the label. Their candidates are generated from a corpus of relevant text,

and are scored using various association measures computed on that corpus. Human anno-

tators rated the quality of the selected high-scoring candidate labels, as well as the quality of

baseline labels generated as the concatenation of the top k words. Humans preferred labels

from the new method over those of the baseline.

Magatti, Calegari, Ciucci, et al. [17] vary this approach by taking candidate labels

from the Open Directory Project hierarchy. Rather than choosing highly ranked candidates

according to a single relevance score, they employ a complex scheme for combining the output

of multiple relevance measures into a single answer. Unfortunately, they do not empirically

validate the quality of the labels generated by their method.

Spitkovsky and Chang generate a mapping from phrases to Wikipedia URLs and

back by observing the frequency of various anchor text phrases on hyperlinks pointing to

Wikipedia pages [23]. The forward mapping could be applied to derive a distribution over

Wikipedia article topics given the text of a document, but the authors do not develop such

a method.

Lau, Newman, Karimi, et al. [15] follow much the same approach as Mei, Shen, and

Zhai but define the task more narrowly as selecting a subset of the words contained in a

topic, from which a label can be generated. They also introduce a supervised approach, with

accompanying performance gains. Lau, Grieser, Newman, et al. [14] extend this work by

generating label candidates from relevant Wikipedia article titles as well as from top words

in a topic. Association measures computed on the entire English Wikipedia are then used

to rank the candidates for final label selection. By outperforming the Mei, Shen, and Zhai

11



www.manaraa.com

approach (and presumably that of Lau, Newman, Karimi, et al. on account of generating

candidate labels that are a superset of those in that paper) this approach distinguishes itself

as the current state of the art in automatic topic labeling.

The Lau, Grieser, Newman, et al. topic labeling method is not without its difficul-

ties. A flowchart representing the processing steps that make up the algorithm (Figure 2.3,

page 13) reveals the complexity of the method. It was not tested on all of the topics output

by LDA due to two significant filtering steps, designated in the flowchart as “Coherence

>= 0.4” and “Half or More Of Top 10 Terms Default Nominal”. The first is a requirement

that the semantic relatedness of the top words in a topic must exceed a threshold of 0.4.

The second is a requirement that half or more of the top 10 terms in a topic have a noun

part of speech as determined by a POS tagger. However, the reliance on Google searches

is the most problematic because of the opacity of that method. The details of Google’s

ever-changing algorithm are not generally known; thus any dependence on it renders part of

the Lau, Grieser, Newman, et al. algorithm essentially undefined.

In all of the above approaches, topic labels are generated post hoc. By contrast, Latent

Dirichlet Allocation with Static Topic-Word Distributions and Explicit Dirichlet Allocation

both provide integrated approaches in which the topic label is included in the output of the

topic model itself.

12
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Figure 2.3: A flowchart representing the Lau, et al. algorithm. The complexity of the algorithm makes it difficult to implement
and to apply.

13



www.manaraa.com

Chapter 3

Probabilistic Explicit Topic Modeling

In this chapter we describe two probabilistic explicit topic models. The first is Latent

Dirichlet Allocation with Static Topic-Word Distributions, or LDA-STWD, which is identi-

cal to LDA with the exception that topic-word distributions are prespecified. The second is

Explicit Dirichlet Allocation, or EDA, which is a probabilistic explicit topic model derived

from first principles.

3.1 Latent Dirichlet Allocation with Static Topic-Word Distributions (LDA-

STWD)

As mentioned earlier, Ramage, Hall, Nallapati, et al. describe Labeled LDA, a variation on

LDA in which document topics are assigned a priori [20]. They apply it to a corpus of web

pages with labels taken from the del.icio.us social bookmarking site. The essential nature of

the model is that topic-word distributions remain latent, while document-topic distributions

are observed.

LDA can be adapted to use observed topic-word distributions but latent document-

topic distributions. As a first, albeit ad hoc attempt, we adapt the Gibbs sampler for LDA

developed by Griffiths and Steyvers [8] to model document corpora in terms of predefined

topic-word distributions. This is done by reformulating the complete conditional in terms

of the counts found in the topic corpus (such as Wikipedia) rather than in the target corpus

(the corpus that the model is being applied to.) These counts do not vary during the

course of sampling. Nevertheless, the d-separability implications of rendering ϕ observed are

14
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ignored—the topic corpus counts are directly substituted for the counts that are typically

sampled.

We call this first approach Latent Dirichlet Allocation with Static Topic-Word Dis-

tributions. The LDA Bayesian network and conditional probability distributions are not

changed, but the complete conditional distribution (eq. 5 of Griffiths and Steyvers) is refor-

mulated in terms of precomputed topic-word counts:

P
(
zij = k

∣∣ z¬ij, w) ∝ ⋆λ
k
ij + β

⋆λ⋆
k + Jβ

· in
⋆
k + α

in⋆
⋆ +Kα

(3.1)

where

− ⋆λ
k
ij is the number of times words of the same type as token wij are assigned to topic

k in the topic corpus (excluding token wij itself),

− ⋆λ
⋆
t is the number of times topic t is assigned to any word in the topic corpus (excluding

token wij itself),

− J is the total number of tokens in the topic corpus,

− in
⋆
k is the number of tokens in document i assigned to topic k (excluding wij where

applicable),

− in
⋆
⋆ is the number of tokens in document i (excluding wij), and

− K is the number of topics in the topic corpus

The resultant model insists that the documents in the target corpus were generated

from a set of preexisting topics and topic word distributions. The sampler is thus expected

to allocate the token-level topic assignments amongst those topics that best describe the

corpus. In other words, the sampler simply chooses which topics to use, but not which

words the topics will contain.

Examples of model output can be found in A.1 and A.2 in Appendix A.
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3.2 Explicit Dirichlet Allocation

In Section 3.1 we described a variation on the standard LDA topic model in which topic-

word distributions are specified a priori from distributions in a separate topic corpus. The

resulting LDA-STWD model is somewhat ad hoc, being a repurposing of LDA rather than

a purpose-built model sui generis. In this section we derive such a probabilistic explicit topic

model—Explicit Dirichlet Allocation.1

Explicit Dirichlet Allocation is a probabilistic graphical model that adapts LDA for

use with predefined, explicit topics. Comparison of the LDA graphical model (fig. 2.2a) with

that of EDA (fig. 3.1) makes the differences between the models clear. In EDA, documents

are still modeled as a probabilistic admixture of topics, where a topic is a categorical distri-

bution over words in a vocabulary. However, the topics (ϕs) in EDA are treated as observed

or explicit, whereas in LDA they are considered unobserved or latent. Additionally, EDA’s

ϕ is no longer conditioned on a parameter β.

The relevant conditional probability distributions can be specified as

wij|zij, ϕzij ∼ Categorical(ϕzij)

zij|θi ∼ Categorical(θi)

θi|α ∼ Dirichlet(α)

for all documents i and for all tokens j in that document.

Definitions:

− M is the number of documents in the corpus

− in
⋆
⋆ is the number of tokens in document i

1A note on nomenclature: as my esteemed colleague, Robbie Haertel, has observed, Explicit Dirichlet
Allocation is something of a misnomer—Latent Dirichlet Allocation was so named on account of the latent
nature of both the topic-word distributions and the document-topic distributions. Explicit Dirichlet Allo-
cation, on the other hand, retains the latency of document-topic distributions, the topic-word distributions
only being specified as explicit. Thus this model would be more properly termed Semi-latent Dirichlet Al-
location. However, for purposes of analogy to Explicit Semantic Analysis, and to emphasize that the key
difference in the new model is the rendering of a variable explicit rather than latent, the less accurate name
of Explicit Dirichlet Allocation was retained.
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.....
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..wij ..ϕt
.

1 ≤ j ≤ in
⋆
⋆
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1 ≤ i ≤ M

..

1 ≤ t ≤ K

.

Figure 3.1: Graphical model for Explicit Dirichlet Allocation

− in
⋆
k is the number of tokens in document i assigned to topic k

− z¬mn denotes the set of all token topic variables except zmn.

− in
⋆
k¬mn denotes the number of tokens in document i assigned to topic k, with the

exception of token wmn (if it occurs in the document)

The distribution of interest which we seek to derive is

P
(
w, z

∣∣ ϕ,α) = M∏
i=1

P (wi,zi | ϕ,α) (3.2)

=
M∏
i=1

∫
θi

P (wi,zi, θi | ϕ,α) dθi (3.3)

Expanding according to the graphical model factorization:

P
(
w, z

∣∣ ϕ,α) = M∏
i=1

∫
θi

P (θi | α)
in

⋆
⋆∏

j=1

P (zij | θi)P (wij | zij) dθi (3.4)
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As P (wij | zij) is not bound by θi we move it outside of the integral:

P
(
w, z

∣∣ ϕ,α) = M∏
i=1

[
in

⋆
⋆∏

j=1

P (wij | zij)

]∫
θi

P (θi | α)
in

⋆
⋆∏

j=1

P (zij | θi) dθi (3.5)

We now focus on the integral over θi, first expanding the probability distributions to their

respective probability functions:

∫
θi

P (θi | α)
in

⋆
⋆∏

j=1

P (zij | θi) dθi =
∫
θi

Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

K∏
k=1

θαk−1
ik

 in
⋆
⋆∏

j=1

θi,zijdθi (3.6)

where Γ (·) is the gamma function. We reformulate the rightmost product topic-wise, reveal-

ing a function reminiscent of the Dirichlet distribution.

=

∫
θi

Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

K∏
k=1

θαk−1
ik

 K∏
k=1

θin
⋆
k

ik dθi (3.7)

In other words, we have restated the product over tokens
∏

in
⋆
⋆

j=1 θi,zij as a product over topics∏K
k=1 θ

in
⋆
k

ik by exponentiating the document-topic probability θik by the number of tokens in

document i assigned to topic k, in
⋆
k. This transformation enables the merger of the two

products over K:

=

∫
θi

Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

K∏
k=1

θin
⋆
k+αk−1

ik dθi (3.8)

This integral can be transformed into the Dirichlet probability density function and thus

eliminated because it integrates to 1, as follows:

∫
θi

P (θi | α)
in

⋆
⋆∏

j=1

P (zij | θi) dθi =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∫
θi

K∏
k=1

θin
⋆
k+αk−1

ik dθi
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=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)
· 1 · 1 ·

∫
θi

K∏
k=1

θin
⋆
k+αk−1

ik dθi

=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∏K
k=1 Γ (in

⋆
k + αk)∏K

k=1 Γ (in⋆
k + αk)

Γ
(∑K

k=1 in
⋆
k + αk

)
Γ
(∑K

k=1 in⋆
k + αk

) ∫
θi

K∏
k=1

θin
⋆
k+αk−1

ik dθi

=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∏K
k=1 Γ (in

⋆
k + αk)

Γ
(∑K

k=1 in⋆
k + αk

) Γ
(∑K

k=1 in
⋆
k + αk

)
∏K

k=1 Γ (in⋆
k + αk)

∫
θi

K∏
k=1

θin
⋆
k+αk−1

ik dθi

=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∏K
k=1 Γ (in

⋆
k + αk)

Γ
(∑K

k=1 in⋆
k + αk

) ∫
θi

Γ
(∑K

k=1 in
⋆
k + αk

)
∏K

k=1 Γ (in⋆
k + αk)

K∏
k=1

θin
⋆
k+αk−1

ik dθi

∫
θi

P (θi | α)
in

⋆
⋆∏

j=1

P (zij | θi) dθi =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∏K
k=1 Γ (in

⋆
k + αk)

Γ
(∑K

k=1 in⋆
k + αk

) (3.9)

Substituting the right side of eq. (3.9) for the integral in eq. (3.5) and then rearranging:

P
(
w, z

∣∣ ϕ,α) = M∏
i=1

[
in

⋆
⋆∏

j=1

P (wij | zij)

]
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∏K
k=1 Γ (in

⋆
k + αk)

Γ
(∑K

k=1 in⋆
k + αk

) (3.10)

=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

M∏
i=1

∏K
k=1 Γ (in

⋆
k + αk)

Γ
(∑K

k=1 in⋆
k + αk

) in
⋆
⋆∏

j=1

P (wij | zij) (3.11)

Replacing P (wij | zij) with its probability function gives the full collapsed joint distribution:

P
(
w, z

∣∣ ϕ,α) = Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

M∏
i=1

∏K
k=1 Γ (in

⋆
k + αk)

Γ
(∑K

k=1 in⋆
k + αk

) in
⋆
⋆∏

j=1

ϕzij ,wij
(3.12)

∝
M∏
i=1

[
K∏
k=1

Γ (in
⋆
k + αk)

]
in

⋆
⋆∏

j=1

ϕzij ,wij
(3.13)

For Gibbs sampling, we derive the complete conditional distribution for any token topic

assignment given all other model parameters:2

2Special thanks to Robbie Haertel for a correction in this section.
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Algorithm 2 Gibbs Sampler for Explicit Dirichlet Allocation.

Input: Word vector w where wij is the index of the word type at position j of document i.
Randomly initialize each element of z to values in {1, 2, . . . , K}
for 1 ≤ i < M do
for 1 ≤ j < in

⋆
⋆ do

Sample zij ∼ UniformCategorical(K)

Sample topic assignments from the complete conditional (eq. (3.18)) for N iterations
for N iterations do
for 1 ≤ i < M do
for 1 ≤ j < in

⋆
⋆ do

Sample zij ∼ P
(
zij = k

∣∣ z¬ij, w)

P
(
zmn = t

∣∣ z¬mn, w,ϕ,α
)
∝ P

(
zmn = t, z¬mn, w

∣∣ ϕ,α) (3.14)

∝
���������������[

M∏
i=1,i ̸=m

Γ

(
K∑
k=1

in
⋆
k + αk

)]
in

⋆
⋆∏

j=1

ϕzij ,wij

× Γ (mn
⋆
t + αt + 1)

K∏
k=1,k ̸=t

Γ (mn
⋆
k + αk)

×
���������[

in
⋆
⋆∏

j=1,j ̸=n

ϕt,wmn

]
ϕt,wmn (3.15)

∝

[
Γ (mn

⋆
t + αt + 1)

K∏
k=1,k ̸=t

Γ (mn
⋆
k + αk) ·

Γ (mn
⋆
t + αt)

Γ (mn⋆
t + αt)

]
× ϕt,wmn

(3.16)

∝ Γ (mn
⋆
t + αt + 1)

Γ (mn⋆
t + αt)

���������K∏
k=1

Γ (mn
⋆
k + αk)× ϕt,wmn (3.17)

Finally, a well-known gamma function identity completes the reduction:

P
(
zmn = t

∣∣ z¬mn, w,ϕ,α
)
∝ (mn

⋆
t + αt)ϕt,wmn (3.18)

Because the topic-word counts in EDA are precomputed, the Gibbs sampler algo-
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rithm is somewhat simpler than LDA’s. Pseudocode for the sampling algorithm is given in

Algorithm 2.

Examples of model output can be found in A.3 and A.4 in Appendix A.
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Chapter 4

Experiments

In this chapter we describe experiments, results, and analysis designed to assess

the quality of the Latent Dirichlet Allocation with Static Topic-Word Distributions (LDA-

STWD) and Explicit Dirichlet Allocation (EDA) topic models. We begin with a preliminary

discussion of data (4.1), a description of our general approach to evaluating label quality us-

ing elicited human judgments (4.2), and our implementation of the topic labeling algorithm

described by Lau, Grieser, Newman, et al. [14]. We then describe experiments used to set

the topic count parameter for LDA+Lau, which is the combination of the Lau, Grieser,

Newman, et al. labeling method with LDA topic modeling (4.4). We then describe an

evaluation of topic label quality, comparing the ⟨topic, label⟩ pairs used by LDA-STWD

and EDA to those generated by LDA+Lau by means of human annotation (4.5). We next

describe a similar comparison regarding document label quality (4.6). Finally, we describe

an assessment of the quality of the generated topics themselves, pitting LDA-STWD and

EDA against the non-probabilistic, explicit ESA topic in a secondary text classification

task.

4.1 Data

Two datasets are used: Reuters 21578 and SOTU Chunks.

Reuters 21578 is a widely-used newswire dataset consisting of 11 367 news reports

in 82 business-centric categories [16]. These categories serve as natural labels for text classi-

fication. We tokenize the dataset’s documents using Mallet’s default stopwords list, with
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the addition of the words “blah”, “reuter”, and “reuters”. This yields a dataset of 827 841

tokens. Evaluations performed using this dataset also omit documents with fewer than 100

characters, fewer than 80 tokens, or more than 20% of characters being numeric.

The SOTU Chunks dataset was derived from the corpus of State of the Union mes-

sages1 delivered once a year (with minor variations) by United States presidents beginning

with George Washington’s first in 1790 and continuing to the present day. The messages are

topically diverse due to the wide range of issues, times, and circumstances addressed. We

split 223 publicly available State of the Union messages into 11 413 two-paragraph chunks

to aid comprehension by human judges in the document label quality task (4.6).

4.2 Human Judgments of Label Quality

To assess LDA-STWD’s and EDA’s ability to find appropriate labeled topics given an input

corpus, we compare document and topic labels from those algorithms to labels generated by

the LDA+Lau combination of LDA and the topic labeling algorithm described by Lau,

Grieser, Newman, et al. To do this, we run all three algorithms on the same target corpus.

Their output was then used to create annotation tasks for Amazon Mechanical Turk to

evaluate how well LDA-STWD or EDA labels fit their topics and documents, respectively.

Amazon Mechanical Turk is a popular crowdsourcing platform that allows requesters to

submit tasks for human workers to complete. Mechanical Turk has been shown to be an

effective tool for a variety of data annotation tasks [22]. In particular it has been successfully

used to evaluate the output of topic models [3][11].

4.2.1 Reimplementation of Lau, et al.

The topic labeling algorithm described in Lau, Grieser, Newman, et al. [14] is key to our

evaluation strategy as it represents the state of the art in automatic generation of topic labels.

As a working implementation of the algorithm was not readily available, it was necessary

1Originally downloaded from http://en.wikisource.org/wiki/Portal:State_of_the_Union_

Speeches_by_United_States_Presidents.
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to write our own implementation. Due to ambiguities in the description of the algorithm, it

was not possible to guarantee that our implementation is functionally identical to that of the

original authors. Our implementation is different (or potentially different) in the following

ways:

− Lau, Grieser, Newman, et al. originally used Google searches to expand the set of

candidate labels. Google’s enforced use policy now prevents any more than a very

small number of queries. To compensate, we use our own index of the documents,

created using the Lucene search engine.

− Our association measure was calculated on the Wikipedia article page dump from 3

April 2012, whereas Lau, Grieser, Newman, et al. used an earlier version.

− We only use pointwise mutual information (PMI) for rating of label candidates, whereas

Lau, Grieser, Newman, et al. use a large number of association measures. We justify

this restriction on the basis of their results, which show PMI as the strongest performer.

− Up to five fallback candidates taken from the top 20 words in a topic are added to the

label candidate set, but only when the word happens to also be the title of a Wikipedia

article. Lau, Grieser, Newman, et al. use the top five words from the topic without

any such restriction.

− Lau, Grieser, Newman, et al. resolved disambiguation pages to all of the pages list as

potential disambiguators. However, we ignore disambiguation pages as they contain

little unique semantic content.

4.3 Convergence

We investigate the convergence properties of LDA-STWD by calculating log-likelihood of

the data using the model at each iteration. Convergence plots of EDA were not generated

and remain for future work. Figure 4.1 and Figure 4.2 illustrate that on SOTU Chunks

and Reuters 21578, respectively, LDA-STWD sees rapid convergence, with the rate of
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change in log-likelihood dropping dramatically by the tenth iteration. This rapid conver-

gence relative to LDA proper can be attributed to the lack of sampling of the topic-word

distributions.
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Figure 4.1: Log-likelihood convergence plot for LDA-STWD on SOTU Chunks across 50
iterations.
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Figure 4.2: Log-likelihood convergence plot for LDA-STWD on Reuters 21578 across 50
iterations.
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4.4 LDA+Lau Topic Count Calibration

In this section we describe experiments conducted to determine best-performing topic counts

for use in the LDA+Lau algorithm.

4.4.1 Experiment

LDA is parameterized by a number of topicsK. As LDA is a key component of LDA+Lau,

it thus becomes necessary to set K in some manner. We do this by choosing the topic count

from a predetermined set that is most often preferred over labels produced with other topic

counts. Topic count calibration user studies were performed for the SOTU Chunks and

Reuters 21578 datasets, on the same topic labeling and document labeling tasks used

as the main form of validation for LDA-STWD and EDA (described in Section 4.5 and

Section 4.6, respectively). In this case, however, LDA+Lau was compared to itself using

different numbers of topics. Topic counts tried were those in {10, 20, 50, 100, 200}, with 5

runs each. 3 users annotated 25 comparisons per pair for each of the 10 unordered pairs of

the possible topic counts.

4.4.2 Results

The results of the calibration experiments are illustrated in Figure 4.3, where

P (choice = LabelK | LabelK ∈ LabelsShown) indicates how often a human annotator se-

lected the label generated using topic countK when shown side-by-side with a label generated

using any other topic count.

In the SOTU Chunks document labeling calibration study (4.3a), the proba-

bility of participants choosing document labels produced by 10-topic LDA+Lau was

P (choice = Label10 | Label10 ∈ LabelsShown) ≈ 0.54—a higher rate of preference than for

any other topic count.

The result for Reuters 21578 was nearly identical (4.3b), with

P (choice = Label10 | Label10 ∈ LabelsShown) ≈ 0.57, beating out all other topic counts
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Figure 4.3: Topic count calibration results for the document label quality (a and b) and
topic label quality (c and d) tasks.
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evaluated.

On the topic labeling task, SOTU Chunks was most preferred at 10 topics, with

P (choice = Label10 | Label10 ∈ LabelsShown) ≈ 0.64 (4.3c). For Reuters 21578, prefer-

ence was maximized at K = 20, with P (choice = Label20 | Label20 ∈ LabelsShown) ≈ 0.56

(4.3d).

The small topic counts of K = 10 and K = 20 may appear suspect given that

a more typical value for corpora of this size would be at least K = 100. The intention

of the calibration was to allow LDA-STWD and EDA approaches to be compared to

LDA+Lau at its best-performing setting, while not incurring the annotation cost required

to perform the actual comparisons at all possible topic counts. The implication is that the

validity of experiments carried out with the parameters chosen in the calibration experiments

hinges on how well the performance of LDA+Lau-generated labels in comparison to other

LDA+Lau-generated labels predicts performance of LDA+Lau-generated labels against

other models.

4.5 Topic Label Quality

To assess LDA-STWD’s and EDA’s ability to find appropriate labeled topics given an input

corpus, we compare topic labels from those algorithms to labels generated by LDA+Lau.

4.5.1 Experiment

The ⟨topic, label⟩ pairs that LDA-STWD and EDA depend on are not products of the

models, but rather are inherent in the Wikipedia topic corpus. Thus any evaluation of

topic label quality does not evaluate the quality of these models per se, but assesses a

critical property of the topic corpus, relative to the quality of ⟨topic, label⟩ pairs generated

by LDA+Lau.

In the topic label quality task, the user is presented with two ⟨topic, label⟩ pairs (one

from each model) side-by-side and asked to choose the label that they think best matches
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Figure 4.4: Topic label quality user study prompt. Participants in the study were asked
to choose the topic for which correspondence between the topic’s words and its label was
greatest.
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X Y X Preferred Y Preferred BT(X;Y,0.5)
Wikipedia LDA+Lau 201 207 0.805
Wikipedia Random 64 31 0.000 924 6
LDA+Lau Random 65 31 0.000 674 7

(a) On SOTU Chunks

X Y X Preferred Y Preferred BT(X;Y,0.5)
Wikipedia LDA+Lau 326 103 4.667× 10−28

Wikipedia Random 77 34 5.495× 10−5

LDA+Lau Random 30 30 1.0

(b) On Reuters 21578

Table 4.1: Outcome of topic label quality experiments

the topic with which it is paired. Topics are represented using the top 10 words in the topic

by P (w | z). Figure 4.4 shows a screenshot of the task as it might appear to a user.

To make ⟨topic, label⟩ pairs from the two models more comparable, the topics taken

from the topic corpus were restricted to the 100 most frequent topics in an EDA analysis of

the relevant target corpus.

4.5.2 Results

While acknowledging the well-known weaknesses of traditional null hypothesis significance

tests, [12] we nevertheless employ the standard two-tailed binomial test in our analysis of

results due to its presence in standard statistical analysis packages. Results of the topic

label quality user study experiments are given in Table 4.1. This shows the number of

times users preferred document labels from the Wikipedia topic corpus over those generated

by LDA+Lau. For example, various users were simultaneously shown a ⟨topic, label⟩ pair

from the Wikipedia topic corpus and a ⟨topic, label⟩ pair generated by LDA+Lau total of

408 times, preferring the Wikipedia label 201 times and preferring the label generated by

LDA+Lau 207 times. The last column in the table shows the outcome of a two-tailed

binomial test—the probability that these results would be produced if users were equally

likely to choose one label or the other (p = 0.5, i.e. the null hypothesis). The second and
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third rows show how each option fared against randomly generated labels—a “sanity check”

against a naive baseline.

In the case of SOTU Chunks, BT (201; 207, 0.5) ≈ 0.805, leaving no room to con-

clude any statisticaly significant difference between the two options.

Reuters 21578, on the other hand, displays a clear distinction: BT (326; 103, 0.5) ≈

4.667× 10−28, meaning that we reject the null hypothesis with confidence at the

9.334× 10−26% level, concluding that participants clearly preferred the Wikipedia labels.

The integrity of this result is somewhat compromised by the presence of many confusing

abbreviated terms in the Reuters 21578 corpus (e.g. “mln”, “pct”, and “bln”) potentially

prejudicing the annotators in favor of the Wikipedia labels. However, this can simply be

understood as confirmation that the topics and labels used by LDA-STWD or EDA are

more easily interpreted by humans.

4.6 Document Label Quality

In this section we describe experiments conducted to assess LDA-STWD and EDA in terms

of performance on a document labeling task.

4.6.1 Experiments

The user is presented with a randomly selected document from the target corpus. For each

of the two topic models, the user is shown the labels of the top 10 topics in the document

by P (z | θ) and asked to choose which of the two sets of labels best matches the content of

the document.

In the document label quality task, participants were shown a short document and two

possible labels for the document, one from LDA-STWD or EDA and one from LDA+Lau.

They were then asked to choose which label best fit the document. The prompt seen by

participants is shown in fig. 4.5. To account for positional bias, position (left or right) on

screen was randomized. As an additional sanity check, occasionally one of the labels would
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Figure 4.5: Document label quality user study prompt. Participants in the study were asked
to choose the label that best corresponds to the content of the document.

be replaced with a randomly chosen label. Clearly, if the random labels were to outperform

either of the models, then there would likely be something wrong with the experiment.

4.7 LDA-STWD Results

Results of the document label quality user study experiments for Latent Dirichlet Allocation

with Static Topic-Word Distributions are given in Table 4.2.

In the case of SOTU Chunks, BT (256; 160, 0.5) ≈ 2.905× 10−6. We can thus firmly
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X Y X Preferred Y Preferred BT(X;Y,0.5)
LDA-STWD LDA+Lau 256 160 2.905× 10−6

LDA-STWD Random 54 27 0.003 596
LDA+Lau Random 91 11 7.967× 10−17

(a) On SOTU Chunks

X Y X Preferred Y Preferred BT(X;Y,0.5)
LDA-STWD LDA+Lau 233 205 0.1970
LDA-STWD Random 76 20 7.319× 10−9

LDA+Lau Random 52 14 2.822× 10−6

(b) On Reuters 21578

Table 4.2: Outcome of document label quality experiments with LDA-STWD

X Y X Preferred Y Preferred BT(X;Y,0.5)
EDA LDA+Lau 123 266 3.286× 10−13

EDA Random 82 26 6.141× 10−8

LDA+Lau Random 91 11 7.967× 10−17

(a) On SOTU Chunks

X Y X Preferred Y Preferred BT(X;Y,0.5)
EDA LDA+Lau 182 247 0.001 97
EDA Random 60 21 1.694× 10−5

LDA+Lau Random 79 11 7.774× 10−14

(b) On Reuters 21578

Table 4.3: Outcome of document label quality experiments with EDA

reject the null hypothesis, leaving us to conclude at the 5.810× 10−4% level that study

participants preferred document labels generated by LDA-STWD over those generated by

LDA+Lau on this dataset.

The results for Reuters 21578 are inconclusive: BT (233; 205, 0.5) ≈ 0.1970, mean-

ing the data are sufficiently well explained by the null model that there is not sufficient

justification to conclude that either algorithm outperforms the other on this dataset.
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4.8 EDA Results

Results of the document label quality user study experiments for Explicit Dirichlet Allocation

are given in Table 4.3, revealing that EDA fared much worse than LDA-STWD. In the case

of SOTU Chunks, BT (123; 266, 0.5) ≈ 3.286× 10−13, indicating that study participants

preferred document labels generated by LDA+Lau over those generated by EDA on this

dataset, with significance at the 6.571× 10−11% level.

Likewise on Reuters 21578, BT (182; 247, 0.5) ≈ 0.001 97, meaning that labels gen-

erated by LDA+Lau were preferred to those generated by EDA on this dataset, with

significance at the 0.393% level.

4.9 Topic Quality

We evaluate the quality of our algorithms’ topics relative to ESA’s by treating each algorithm

as a dimensionality reduction method on the Reuters 21578 dataset, and evaluating the

performance of an SVM classifier on the reduced data. Presumably the topic model whose

output produces the best performance on the text classification task will be the same one

that best reflects the essential meaning of the documents [28, 29].

Version 3.12 of the popular LIBSVM library was used for the evaluation.

4.9.1 Comparison to ESA

It is important to compare the quality of our models’ output to the baseline of ESA, a

non-probabilistic, explicit topic model. Though a number of implementations of ESA were

already available, we chose to reimplement the algorithm to allow sharing of data and code

with our algorithms’ implementations. We had already expended substantial effort gener-

ating topic count and type-topic count indexes on Wikipedia article text for use in LDA-

STWD and EDA. Implementing ESA ourselves allowed us to make direct use of those

existing indexes, freeing us from substantial preprocessing effort.
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The comparison of our models to ESA was done by means of a classification task

serving as proxy for model quality. Because ESA can produce a score for all prespecified

topics given a document, it was necessary to select features to bring ESA output down to a

reasonable size. The feature selection algorithm was defined by:

Features(N) =
∪

d∈Documents

TopNTopics(d,N) (4.1)

Features(1) was used in practice because the number of features selected becomes pro-

hibitively large for higher values of N .

4.9.2 Sample Summarization

Each iteration of the LDA-STWD and EDA Gibbs samplers assigns topics to all tokens in

the target corpus. These samples can then be “summarized” in various ways. We summarize

by summing document-topic counts across post-burn iterations:

∀d∈{1,...,M} ∀z∈{1,...,K} θ̂d,z =

∑
iCi (z | d)∑

i

∑
z′ Ci (z′ | d)

(4.2)

where Ci (z | d) is the number of tokens in document d assigned to topic z in the ith iteration.

This summarization method gives representation to any document-topic pair that occurs in

at least one post-burn iteration, but gives greater weight to document-topic pairs that occur

in many iterations or with high frequency within iterations. In practice, we only sum across

10 iterations to prevent the counts matrix from becoming impractically dense.

4.9.3 Results

Whereas the document label quality experiments sought to validate LDA-STWD and EDA

as document labeling methods compared to an LDA+Lau baseline, we now compare the

same algorithms’ performance as dimensionality reduction methods on a classification task

using the method described in Section 4.9, which shows classification accuracies for the var-

35



www.manaraa.com

ESA LDA-STWD EDA
Accuracy 80.6 47.3 51.9

50.2 52.5
51.3 52.2
50.5 52.4
50.2 52.7

Mean 49.9 52.3
Stdev 1.36 0.27

Table 4.4: Results of the topic label quality evaluation, comparing the utility of ESA, LDA-
STWD, and EDA respectively as dimensionality reduction methods prior to classifying
documents in the Reuters 21578 dataset.

ious algorithms. For LDA-STWD and EDA, . The results are given in Table 4.4. Because

ESA is deterministic, classification on that model’s output always gave the same result.

Clearly ESA has an advantage over its probabilistic counterparts on this task: a one-sample

t test comparing ESA’s 80.6 to LDA-STWD gives p = 1.44e− 06, while the comparison to

EDA gives p = 3.25e−09. ESA’s advantage is easily attributable to ESA’s fully populated

topic relevance output matrix, in contrast to the sparse output of the probabilistic models.

More concretely, ESA can be computed and output on a per-topic basis, whereas the prob-

abilistic methods’ output must undergo memory-intensive sample summarization, limiting

output density on a single core. A better comparison could be achieved using a relatively

straightforward map/reduce algorithm on a small cluster, but we consider such work outside

of the scope of this thesis.

The winner on this task between the two probabilistic algorithms is EDA, with a

standard t test giving p = 0.00789. No obvious reason for the distinction presents itself, and

it stands in interesting contrast to the superiority of LDA-STWD in the document labeling

task.
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Chapter 5

Conclusions and Future Work

This thesis introduces two methods for probabilistic explicit topic modeling that

address specific weaknesses of LDA, namely the lack of useful topic labels and the inter-run

identifiability problem. LDA-STWD does this by directly substituting precomputed counts

for LDA topic-word counts, leveraging existing Gibbs sampler inference. EDA defines an

entirely new explicit topic model and derives the inference method from first principles. Both

of these methods approximate topic-word distributions a priori using word distributions from

Wikipedia articles, with each article corresponding to one topic and the article title being

used as a topic label.

LDA-STWD significantly outperforms LDA+Lau in labeling the documents in the

SOTU Chunks corpus, and the topic labels derived from Wikipedia are vastly preferred

by human annotators over those generated by LDA+Lau for the Reuters 21578 corpus.

A number of non-rejections of the null hypothesis also speak in favor of LDA-STWD

and EDA as more-principled peers to LDA+Lau. The lack of significant difference between

Wikipedia and LDA+Lau on SOTU Chunks shows the Wikipedia-derived topics perform-

ing no worse than the state of the art. Likewise, LDA-STWD is not found to be worse than

incumbent LDA+Lau on Reuters 21578, even though it cannot be said to be significantly

better. And finally, EDA is not found to perform significantly worse than LDA+Lau on

Reuters 21578. Thus the principled, straightforward LDA-STWD and EDA algorithms

can be seen performing at the same level of quality as the less-intuitive post hoc Lau, et al.

method for this task.
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The superiority of LDA-STWD to EDA demands explanation. Mathematically, the

two models differ solely in the presence or absence of smoothing in the topic-word distribu-

tions (ϕ). This suggests that EDA’s lack of smoothing could be harming performance.

LDA-STWD and EDA suffer from the need to maintain a topic count many orders

of magnitude higher than usual in order to achieve generality. Typical applications of LDA

setK in the hundreds at most, but LDA-STWD and EDA haveK in the millions, reflecting

the number of articles in Wikipedia. This clearly increases the amount of computation for

each sampling iteration proportionally. Multithreaded performance on a single computer was

slow but acceptable. But the prespecification of topic-word counts opens up opportunities for

further parallelism because all token topic assignments for a given document are independent

of all token topic assignments in other documents given the owning document’s document-

topic vector (θ).

The research in this thesis could be extended in a number of ways. One would be to

implement distributed, parallelized versions of the algorithms introduced in this thesis. Be-

cause LDA-STWD’s and EDA’s topic-word distributions are fixed in advance, the models

have independence properties that should allow easier distribution of the sampling work-

load amongst multiple compute nodes. This should lead to far shorter runtimes, allow more

samples to be generated, and thus lead to richer output.

One evaluation of EDA still lacking is proper convergence plots. This is simply a

matter of implementing a proper log-likelihood calculation and running it.

Another variation on EDA worth investigating is a model in which topic-word dis-

tributions are latent, but explicit topic information is encoded in the priors on those distri-

butions. Such an approach was taken in Mr. LDA, but was not applied to a large number

of topics.

Another avenue for future work would be to allow some topics in LDA-STWD or

EDA to have latent topic-word distributions. Relative to standard LDA, the probabilistic,

explicit topic models introduced in this thesis bias the resultant topics toward subjects of
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general interest,1 at the expense of topics of only local interest. For example, a collection

of corporate emails may deal with the topic of supply chain management (general interest)

as well as the particulars of the corporation’s internal politics (local interest). Only the

former is likely to have a corresponding Wikipedia-derived topic, meaning the latter will be

improperly accounted for by LDA-STWD and EDA. Such confusion would have at least

two negative consequences: first, the blocking of the true local interest topic from model

output; second, potential degradation of the quality of the topics chosen as they are forced

to account for the unrecognized local interest topic.

Additional allowance must be made for local interest topics lest they be conflated

with the a priori topics. A simple solution may be to treat a certain set of topics L ⊆ T

as latent. This can be achieved by using the original complete conditional (Equation (2.1))

when calculating the probability of topics in L.

1http://en.wikipedia.org/wiki/Wikipedia:Notability
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Appendix A

Sample Output

We now give listings of the 40 most frequent topics for the various dataset-algorithm

combinations evaluated in this thesis. In each table, rank gives the topic’s position when

sorted by token count, label is the human-readable label associated with the topic, and

count is the total number of tokens assigned the corresponding topic across 40 iterations.

A.1 LDA-STWD on SOTU Chunks

rank label count

1 Judicial system of the People’s Republic of China 601421

2 UK Immigration Service 346536

3 United States Constitution 268730

4 William Fitzwilliam, 4th Earl Fitzwilliam 190242

5 Origins of the American Civil War 142781

6 History of the English fiscal system 141606

7 First Stadtholderless Period 141174

8 History of rent control in England and Wales 139002

9 Human rights in the Democratic Republic of the Congo 133997

10 Historical powers 118912

11 A Program for Monetary Reform 113266

12 Mediation 110380

13 Government procurement in the United States 92626
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rank label count

14 Capital, Volume I 90736

15 Foreign relations of India 84905

16 South African property law 83392

17 Reconstruction Era of the United States 77556

18 International child abduction in Mexico 71777

19 United States federal budget 68996

20 NSA warrantless surveillance controversy 67340

21 Criticism of the Israeli government 59453

22 2003 in Afghanistan 59239

23 Income tax in the United States 54231

24 International reactions to the 2006 Lebanon War 53998

25 Value-form 53568

26 History of Basilan 52469

27 Health care in the United States 50811

28 Opportunism 49623

29 Industrial and organizational psychology 49604

30 Maritime history of California 48129

31 Presidency of Ulysses S. Grant 48038

32 South African contract law 47433

33 Spanish-Moro Conflict 44803

34 History of United States diplomatic relations by country 43407

35 Critique of Pure Reason 41785

36 History of Eglin Air Force Base 41454

37 Trent Affair 40972

38 Lame duck session 40910

39 Palestine 194 40788
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rank label count

40 Economic democracy 39463

A.2 LDA-STWD on Reuters 21578

rank label count

1 Russian Venture Company 389101

2 Economy of the People’s Republic of China 370646

3 Nuclear program of Iran 287149

4 UK Immigration Service 273428

5 2003 in Afghanistan 245129

6 Fortis (finance) 235536

7 Chronology of world oil market events (19702005) 201052

8 Economy of Pakistan 150795

9 History of agriculture in the People’s Republic of China 142420

10 A Program for Monetary Reform 133515

11 History of private equity and venture capital 108893

12 Blockade of Germany (19391945) 91701

13 Taxation in the People’s Republic of China 87636

14 Pharmaceutical industry in the People’s Republic of China 83760

15 Economic history of Portugal 79189

16 Saddam Hussein and al-Qaeda link allegations timeline 76763

17 Social Security debate in the United States 75065

18 Political debates about the United States federal budget 74175

19 Economy of Egypt 73797

20 Common Agricultural Policy 72504

21 Foreign trade of the Soviet Union 69154

22 Economic history of Brazil 68915
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rank label count

23 National broadband plans from around the world 68441

24 International public opinion on the war in Afghanistan 66066

25 Subprime mortgage crisis 64409

26 Ethanol fuel in Brazil 62700

27 South African contract law 62623

28 DoddFrank Wall Street Reform and Consumer Protection Act 61619

29 MLN-29 61018

30 Emergency Economic Stabilization Act of 2008 59947

31 Rate-capping rebellion 59214

32 Automotive industry in India 58932

33 Deficit reduction in the United States 56065

34 Subprime crisis background information 55132

35 Enron scandal 54510

36 History of Germany 54401

37 Monetary policy 54216

38 Convertible bond 52986

39 Value-form 51883

40 Inflation 50900

A.3 EDA on SOTU Chunks

rank label count

1 UK Immigration Service 56475

2 Judicial system of the People’s Republic of China 43070

3 Ages of consent in North America 37256

4 South African contract law 35168

5 Government procurement in the United States 31506
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rank label count

6 Spanish-Moro Conflict 29330

7 William Fitzwilliam, 4th Earl Fitzwilliam 28084

8 The Idler (17581760) 23048

9 Nuclear program of Iran 22222

10 Mediation 21334

11 United States federal budget 19612

12 English contract law 18485

13 History of Basilan 17441

14 First Stadtholderless Period 16884

15 Taxation in the People’s Republic of China 16793

16 Trent Affair 16791

17 International public opinion on the war in Afghanistan 16066

18 Blockade of Germany (19391945) 15703

19 History of United States diplomatic relations by country 15601

20 Social Security (United States) 15446

21 A Program for Monetary Reform 15312

22 History of the English fiscal system 14816

23 Humanitarianism 14361

24 Economic history of the United States 13854

25 History of rent control in England and Wales 13798

26 Gold standard 13292

27 International child abduction in Mexico 12843

28 South African property law 12517

29 Timeline of events leading to the American Civil War 12359

30 Subprime mortgage crisis solutions debate 12244

31 Tariffs in United States history 11851
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rank label count

32 Capital, Volume I 11805

33 Presidency of Ulysses S. Grant 11380

34 Nullification (U.S. Constitution) 11352

35 Foreign relations of Romania 11326

36 2003 in Afghanistan 11208

37 Nicomachean Ethics 11190

38 Federal Reserve System 11106

39 Harold Wilson 10751

40 Article One of the United States Constitution 10270

A.4 EDA on Reuters 21578

rank label count

1 Kaluga Oblast 314706

2 Russian Venture Company 223512

3 Coal Company Zarechnaya 176941

4 Chronology of world oil market events (19702005) 143460

5 Deutsche Bundesbank 88719

6 Federal Reserve System 68958

7 Subprime mortgage crisis 61054

8 1990-1999 world oil market chronology 59478

9 Balance of payments 53290

10 Economy of the People’s Republic of China 42438

11 2010 New England Revolution season 38956

12 Fortis (finance) 38400

13 University of Pittsburgh School of Health and Rehabilitation Sciences 38285

14 Soybean 36739
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rank label count

15 Economic history of Portugal 34965

16 Economy of Honduras 33613

17 Carpal tunnel syndrome 33418

18 Audie Pitre 33409

19 Blockade of Germany (19391945) 31466

20 Clayton Keith Yeutter 29971

21 Economy of Pakistan 29091

22 Nuclear program of Iran 28008

23 MLN-29 27537

24 Conflict tactics scale 26502

25 Foreign trade of the Soviet Union 26356

26 Bretton Woods system 26241

27 Tobin tax 25826

28 Net capital rule 25585

29 Credit default swap 25486

30 History of private equity and venture capital 25111

31 Shearson 25046

32 Social Security (United States) 24957

33 2010 NCAA Division I baseball season 23773

34 US Airways 23676

35 Cadillac CTS 23454

36 A Program for Monetary Reform 22877

37 Occupational therapy in carpal tunnel syndrome 22867

38 DoddFrank Wall Street Reform and Consumer Protection Act 22382

39 History of agriculture in the People’s Republic of China 22317

40 Subprime mortgage crisis solutions debate 22077
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